Effect of low-Z Impurities on H-mode Pedestal Structure, Performance, and ELMS

Rajesh Maingi

Princeton Plasma Physics Laboratory

Acknowledgements: A. Bortolon, J. Canik, M. Dunne, J.S. Hu, R. Majeski, T. Osborne, P. Snyder

ITER School on Pedestal Physics USTC, Hefei China

china eu india japan korea russia usa

Outline

- Pedestals with carbon walls and high-Z walls
 - Brief history of PFC materials in fusion devices
- Purposeful introduction of low-Z
 - Real time injection with gas/aerosol [JET, AUG, DIII-D, EAST]
 - Inter-discharge Coatings (lithium, (boron)) [NSTX, (LTX, C-Mod, EAST)]
 - Real-time injection with pellets [DIII-D, (EAST)]
 - Low-Z liquid metal PFCs: static, flowing [(LTX, FTU), EAST]
- Prospects and open questions

2

Tritium retention is strongly affected by choice of PFC materials

- Graphite was PFC of choice in 90's, but it captures hyrogenic species via unsaturable co-deposition
 - e.g. Graphene & Zn shown on right
- C advantages
 - Good power handling, good thermal shock and thermal fatigue resistance (low crack propagation)
 - Doesn't melt (but sublimes), low radiated power
 - Good joining technology, low-Z
- C disadvantages
 - Chemical erosion and co-deposition; dust generation
 - May require conditioning
 - Physical and mechanical properties degrade w/low neutron fluence

G. Federici, Nucl. Fusion **41** (2001) 1967

2

Co-deposits in Tore Supra

Tungsten chosen for divertor & beryllium chosen for wall PFCs of ITER

- Tungsten advantages
 - Low in-vessel tritium retention (at T \leq 500 °C)
 - Low physical sputtering yield with a high energy threshold
 - No chemical sputtering with hydrogen
 - Reparable by plasma spray; good joining technology
- Tungsten disadvantages
 - Low allowable core concentration
 - Melts under large transient loads
 - High ductile-brittle transition temperature (DBTT), which increases with neutron damage
 - Recrystallizes, becomes brittle at temperatures >1500 K
 - High activation
 - Blisters and generates 'fuzz' under He bombardment
 - Confinement reduced in tokamaks as compared with carbon PFCs

G. Federici, Nucl. Fusion **41** (2001) 1967

ITER divertor is "W"-shaped, with tungsten divertor and Beryllium wall plasma facing components

5

Plasma facing surfaces in present and past tokamaks

Device	Lim/ Div	PFC mat'l	Device	Lim/Div	PFC mat'l
JET (2010+)	Divertor	W div. & Be wall	JET(-2009)	Divertor	Carbon
AUG(2007+)	Divertor	W divertor & wall	AUG(-1999)	Divertor	Carbon
C-Mod	Divertor	Mo divertor & wall	DIII-D	Divertor	Carbon
NSTX	Divertor	C Wall/Li coating	NSTX-U plan	Divertor	High-Z + Liq. Li
EAST	Divertor	W upper, Mo wall, C lower, Li coat	KSTAR	Divertor	Carbon
JT-60U	Divertor	Carbon	TFTR	Limiter	Carbon
Tore Supra	Limiter	Carbon	WEST	Divertor	W wall
MAST-U	Divertor	Carbon	COMPASS	Divertor	Carbon
RFX	Limiter	Liq. Li - Mo mesh	LTX	Limiter	Liq. Li on SS

R. Maingi: low-Z impurity effects on the pedestal – ITER school USTC, Hefei, China

6

Outline

- Pedestals with carbon walls and high-Z walls
 - Brief history of PFC materials in fusion devices
- Purposeful introduction of low-Z
 - Real time injection with gas/aerosol [JET, AUG, DIII-D, EAST]
 - Inter-discharge Coatings (lithium, (boron)) [NSTX, (LTX, C-Mod, EAST)]
 - Real-time injection with pellets [DIII-D, (EAST)]
 - Low-Z liquid metal PFCs: static, flowing [(LTX, FTU), EAST]
- Prospects and open questions

C-Mod and ASDEX-U experience with high-Z PFCs

- C-Mod experience
 - Started with solid Mo tiles
 - Mostly good, but damage does not 'repair' itself
- AUG experience
 - W changed in stepwise fashion from 1999-2007
 - W coatings (4 μm PVD main chamber, 200 μm VPS divertor) on fine grain graphite
 - Delamination occurred for high power;
 - Divertor re-coated with 10 μ m W on 4 μ m Mo via PVD

R. Neu, Phys. Scr. T138 (2009) 014038

Picture of JET with carbon and then ITER-like wall

S. Brezinsek, J. Nucl. Mater. 464 (2015) 11

R. Maingi: low-Z impurity effects on the pedestal – ITER school USTC, Hefei, China

9

Long term deuterium retention reduced ~10-20x in JET with ITER-like wall (also in AUG and C-Mod), but...

R. Maingi: low-Z impurity effects on the pedestal – ITER school USTC, Hefei, China

Edge pedestal T_e reduced in JET with increasing density in both the carbon and ITER-like wall

• Additional pedestal T_e reduction in JET-ILW vs. JET-C

Edge and core plasma confinement in JET scenarios was reduced with installation of ITER-like wall

- Partial performance recovery with N₂ seeding
- Less favorable results with Ne
- Projected performance less than in 1990's D-T experiment -> will need to increase the NBI heating power for JET DT 2018+ M. Beurskens, PPCF 55 (2013) 124013

Nitrogen seeding improves pedestal performance in JET

 N_2 seeding increases $H_{98,(y,2)}$ pedestal pressure, even if not limited by 1.0 P/B modes • N_2 seeding $v_{e,ped}^*$, while Ne seeding 0.8 increases $v_{e,ped}$ 0.6 Hypothesis: Ne ulletradiates inside separatrix and changes pedestal 0.4dynamics directly 0.1 0.3 0.5 Prad.div/Prad.main C. Giroud, H-mode WS, Oct. 2015

R. Maingi: low-Z impurity effects on the pedestal – ITER school USTC, Hefei, China

H-factor also reduced in C-Mod without conditioning; Boronization or N₂ seeding can recover some or all H-factor

R. Maingi: low-Z impurity effects on the pedestal – ITER school USTC, Hefei, China

16Dec2015 14

Brief background on edge stability calculations (see edge stability theory in lecture by P.B. Snyder)

- ELMs appear to be the consequence of violating ideal or resistive magneto-hydrodynamic stability limits
- ELMs expel up to 20% of the plasma stored energy in less than one ms, resulting in 10x or larger increases in the peak divertor heat flux

Edge Localized Modes (ELMs) appear to be violations of ideal or resistive MHD stability limits

- Plasmas undergo a transition from low (Lmode) to high (H-mode) when enough heating power is added
- The edge plasma pressure develops a stairstep or "pedestal" in H-mode

• The steep edge pressure gradient and/or edge current can destabilize Edge Localized Modes (ELMs), where a portion of the pedestal pressure and energy is periodically expelled

Edge Localized Modes (ELMs) appear to be violations of ideal or resistive MHD stability limits

- Plasmas undergo a transition from low (Lmode) to high (H-mode) when enough heating power is added
- The edge plasma pressure develops a stairstep or "pedestal" in H-mode

 The steep edge pressure gradient and/or edge current can destabilize Edge Localized Modes (ELMs), where a portion of the pedestal pressure and energy is periodically expelled

Courtesy of P.B. Snyder

ELMs expel particles and energy from the low field side, which is prone to ballooning-type pressure driven modes

- Plasmas undergo a transition from low (Lmode) to high (H-mode) when enough heating power is added
- The edge plasma pressure develops a stairstep or "pedestal" in H-mode

 The steep edge pressure gradient and/or edge current can destabilize Edge Localized Modes (ELMs), where a portion of the pedestal pressure and energy is periodically expelled

Power and particle fluxes from ELMs are transported to divertor

- Plasmas undergo a transition from low (Lmode) to high (H-mode) when enough heating power is added
- The edge plasma pressure develops a stairstep or "pedestal" in H-mode

 The steep edge pressure gradient and/or edge current can destabilize Edge Localized Modes (ELMs), where a portion of the pedestal pressure and energy is periodically expelled

Power and particle fluxes from ELMs on outer wall and divertor are 10 times higher than steady inter-ELM fluxes

ASDEX-U studies with W wall and N₂ injection

AUG naturally operates at higher n_e, lower T_e with W wall (zero extra fueling, no seeding)

- Zero fueling comparison in AUG shows higher n_e, lower T_e , same P_e with W wall
- H-factor reduction because there is no observed increase of H with n_e, as comes from the H98 scaling law

R. Maingi: low-Z impurity effects on the pedestal – ITER school USTC, Hefei, China

N₂ seeding can recover some or all H-factor loss in AUG

Degradation with increasing n_e seen with C and W wall

23

Nitrogen seeding shifts n_e profile radially inward in AUG, improving edge stability to ballooning modes

N₂ seeding reduces density in HFS high density region: reduced recycling from inner leg?

1.2

1.0

0.8

0.6

0.4

0.2

0.0

NBI ICRH

 ΔW_{MHD}

I_[MA]

#31228

25

W____ [MJ]

AUG

 Hypothesis: inward n_e shift caused by reduced fueling from HFS high density region, because N₂ radiates power in edge, reducing n_e in HFSHD by ~ 50%

Summary and Open Questions: effect of high-Z walls on pedestal, including low-z coatings

- Installation of a metallic wall in AUG and JET reduced pedestal $\rm T_e$ and H-factor, raised $\rm n_e$
 - Why does this happen even at zero fueling? Simply from going to higher recycling with metals?
- N₂ seeding increased H-factor and pedestal pressure in AUG and JET
 - n_e profile shifts away from separatrix, while T_e profiles stays ~ constant; improves edge stability
 - No effect with Neon; why?
 - Can the fueling from the HFS high density region be connected to the profile shift via SOL modeling?
 - Can the profile be further shifted inward for more stability improvement?

Even lower-Z: Lithium aerosol injection in DIII-D (in-depth presentation of the research)

Li injection can alter pedestal and ELM characteristics, delaying ELMs and improving confinement in DIII-D

- Li aerosol injection results in reduced C and metal concentration
 High Li conc. (< 15%) consistent with neoclassical transport
- Periods of increased pedestal pressure and width that are observed in conjunction with pedestal density fluctuations increase in frequency and duration with Li injection
 - "Bursty Chirping Mode" causes $\delta n_e/n_e \sim 8\%$; constant P_{rad}
 - With Li injection, the ELM-free period grows to < 350 msec, with H_{H98v2} increasing by < 60% and P_e^{ped} increasing by < 150%
 - Recycling unchanged: D_{α} does not decrease
 - Too much Li drives plasma to H-L; too little shows small effect
- Density fluctuations flatten pressure profile near separatix improving peeling-ballooning stability -> higher P_{ped}
 - Wide pedestal terminated by giant ELM, consistent with ELITE
- Li dilution of main ion density contributes to long ELM-free periods with Li injection

Piezoelectric crystal and assembly used to drop Lithium into the edge of fusion devices

D. Mansfield, FEDC 85 (2010) 890

Lithium dropper deployed in upper region of DIII-D

- Gravitational acceleration of ~ 45 μm commercially available Li spheres
 - Li injection into plasma results in green light emission
 - Controllable flow rate < 10²² atoms/sec

Fig. 1. The SLMP® powder used in this work.

D. Mansfield, FEDC 85 (2010) 890

R. Maingi: low-Z impurity effects on the pedestal – ITER school USTC, Hefei, China

16Dec2015

Lithium injection and BCM induce a rapid increase to larger pedestal width, but pressure builds up more slowly

R. Maingi, H-mode WS, Oct. 2015

- ELM-free bifurcated state can be seen in D_a emission
- H_{98y2} ≤1.8 here, 2.0 in other discharges
- T_e^{ped} nearly doubled during bifurcations
- P_e^{ped} nearly tripled during bifurcations
- Pe^{width} increased by 100%

Extended (short) periods with enhanced pedestal pressure and width observed with (without) Li injection

- Periods with enhanced p_{PED} , Δ_{PED} (tanh profiles) extended to 350ms with Li
 - Short periods (~20ms) occasionally observed even without Li
- n_e fluctuations located in pedestal region during enhance periods

High levels of Li observed in plasma core at injection levels sufficient for triggering pedestal improvements

Li contribution to charge balance can • be large ($\sim 50\%$)

- C and D reduced as Li increases •
 - Neutron rate decreases consistent _ with D decrease
- Z_{EFF} increased by $\leq 20\%$ (2 $\Rightarrow 2.4$)
- C-II light from divertor has no obvious • baseline decrease with Li increase but small 'fuzz' seen in ELM free periods
- Lower Li injection rates increase • likelihood of coherent fluctuations, but not their duration

T. Osborne, Nucl. Fusion 55 (2015) 063018

Bursty Chirping Mode (BCM) observed in periods of Pedestal enhancement

150 f_{MODE} ≈ 70kHz , f_{BURST}≈ 1kHz δn_{PES}^{PED} Chan 5,45 Cross Power 120 9 9 Coherent on short time scale - f_{MODE} varies within burst $k_{POL} \approx 0.1 \text{ cm}^{-1}$, $k_{POL}\rho_s \approx 0.1$ 30 Rotates in electron drift direction 0 in plasma frame \Rightarrow MTM or δn_{BES}^{PED} (au) DTEM, not KBM 2 besfu37 (40-150kHz) 1.0 shot 157267 0.5 -2 0.0 $\delta n_{\text{RES}}^{\text{PED}}$ (40-120kHz) (au) -0.5 0 -1.0140 -1 120 f (kHz) 100 ELM Ш ELM 80 60 40 ^L 177.5 2178.0 2179.5 2180.0 2178.5 2179.0 D_{α} -Divertor Strike Point(au) time (ms) 2350 2450 2550 2650 2750 Z. Yan, 42nd EPS, Lisbon, Portugal Time (ms)

R. Maingi: low-Z impurity effects on the pedestal – ITER school USTC, Hefei, China

16Dec2015 34

157270

2850

drop at

BCM off

Profiles rebuild in region near separatrix before ELM after BCM terminates

- D_α drops when BCM turns off before end of ELM free period
 - In most cases the BCM continues until an ELM occurs
- Gradients rebuild in region near separatrix consistent with radial location of BCM when it turns off
- Giant ELM terminates ELM-free phase with or without BCM

R. Maingi: low-Z impurity effects on the pedestal – ITER school USTC, Hefei, China

Reduced ∇p near separatrix with BCM shifts high ∇p region inwards and improves PBM stability allowing higher p^{PED}

Ballooning stability improves but kink/peeling stability decreases with increased profile flattening (model equilibria)

In addition to affecting BCM, Li may extend enhanced pedestal phase by reducing ion pressure through dilution

- At similar times following an ELM with enhanced pedestal, discharge with Li has lower ion pressure and higher Z_{eff}
 - Reduced p',j ⇒ Li case stable to PBM for much longer

Summary and Open Questions: Effect of Lithium aerosol injection in DIII-D

- Microscopic Li particles penetrate into the core
 - Low injection rates: recycling unaffected, but there is an immediate reduction of higher-Z impurities, as well as a measurable reduction in ELM frequency
 - Pedestal unaffected at low Li injection rates; suggests no intrinsic stability benefit to main ion dilution
- In presence of BCM, Li injection causes long ELM-free periods with increased confinement and H-factor
 - How does Li interact with BCM to make it more likely to occur between ELM cycles?
 - Would C, B, or Be dust work as well?
 - Can the BCM or other mode be destabilized in reference discharges where it is not observed?

Lithium aerosol injection in EAST (in-depth presentation of the research)

Real-time conditioning with Li injector eliminated ELMs in 24 sec long H-mode discharges in EAST

- Large quantities (20-40g) of Li typically evaporated in morning before start of experiments
 - As Li wears off, real-time conditioning with Li dropper used
- Global characteristics changed with real-time Li conditioning
 - Recycling: D_{α} declined by 10-30% in all measured views
 - ELMs eliminated, but with steady P_{rad}, density
 - Edge Coherent Mode appeared
 - Energy confinement (τ_E , H-factor) steady at H98=0.75-0.8
- Hypothesis: Edge Coherent Mode provides particle transport that changes the edge gradients and eliminates ELMs
 - Profile measurements and stability analysis are needed

Li evaporators used for morning conditioning in EAST; Li injector used for real-time conditioning

Li injector used for four contemporaneous discharges (41075-41079) in EAST

Recycling dropped in nearly all divertor legs with real time Li injection in EAST (41075-41079)

R. Maingi: low-Z impurity effects on the pedestal – ITER school USTC, Hefei, China

16Dec2015 44

ELM frequency drop correlated with Li injection (first Li shot in sequence) in EAST; elimination required several sec

Radiated power and density remained steady during H-mode with eliminated ELMs in EAST

Edge coherent mode (ECM) turned on with Lithium injection (and correlated ELM elimination) in EAST

Summary and Open Questions: Effect of Lithium aerosol injection in EAST

- Li injection into EAST eliminates ELMs
 - Does the Li injection shift the n_e profile inward?
 - Is the underlying physics consistent with ideal MHD stability?
 - How does the Li injection modify the existing ECM (or destabilize a new one)?
 - Does this work with higher heating power, NBI heating instead of ICRF?
 - Does this work in USN discharges where the main strike points would be on the W PFCs?

Outline

- Pedestals with carbon walls and high-Z walls
 - Brief history of PFC materials in fusion devices
- Purposeful introduction of low-Z
 - Real time injection with gas/aerosol [JET, AUG, DIII-D, EAST]
 - Inter-discharge Coatings (lithium, (boron)) [NSTX, (LTX, C-Mod, EAST)]
 - Real-time injection with pellets [DIII-D, (EAST)]
 - Low-Z liquid metal PFCs: static, flowing [(LTX, FTU), EAST]
- Prospects and open questions

Lithium (solid and liquid) PFCs can double H-factor

50

Lithium pre-discharge coatings in NSTX (in-depth presentation of the research)

Plasma characteristics and edge stability improved nearly continuously with increasing lithium coatings in NSTX

- Lithium evaporated before discharge; amount scanned
 - Core Li concentration very low, typically < 0.1%</p>
- Global characteristics changed
 - Recycling: D_{α} declined in all measured views
 - Energy confinement (τ_E , H-factor) improved, consistent with reduced transport at lower ν^*
 - When discharges were ELM-free, radiated power increased with time (we tested several techniques to ameliorate this problem)
- Edge particle and thermal transport declined
- ELM frequency decreased before going to 0
 - Profiles shifted away from separatrix improving stability to kink/ peeling modes
 - Edge stability gradually improved

ELMs eliminated gradually during systematic introduction of lithium evaporation into NSTX

Type I ELMs eliminated, energy confinement improved with lithium wall coatings

16Dec2015 54

Edge stability limits pushed beyond global stability limits with lithium coatings in NSTX

R. Maingi: low-Z impurity effects on the pedestal – ITER school USTC, Hefei, China

Recycling, neutral pressure, and pressure peaking decreased nearly continuously with increasing lithium; H_{H97L} increased

R. Maingi: low-Z impurity effects on the pedestal - ITER school USTC, Hefei, China

Edge profiles modified with lithium

R. Maingi: low-Z impurity effects on the pedestal – ITER school USTC, Hefei, China

Pre-lithium edge profiles close to kink/peeling instability threshold (ELITE)

No lithium

- Low n=1-5 pre-cursor oscillations observed before ELM crash
- Mode growth rates low

R. Maingi, PRL 103 (2009) 075001

ELMy discharges closer to kink/peeling stability boundary than ELM-free ones

SOLPS interpretive simulations indicate particle fueling source from recycling was reduced with lithium

- Target recycling coefficient varied to • match peak divertor D_{α}
- Separatrix position adjusted as needed to match divertor peak heat flux
- Radial profile of D_{eff} , χ_e^{eff} , χ_i^{eff} varied to • match midplane n_e , T_e , T_i , for the computed recycling source profile

SOLPS

0.85

Particle source (10²² /m³/s) .0 .1 .5 .5

0

0.8

 Ψ_{N}

J. Canik, JNM 415 (2011) S409

0.95

0.9

 Ψ_N

R. Maingi: low-Z impurity effects on the pedestal – ITER school USTC, Hefei, China

Recycling and edge transport changes interpreted with SOLPS simulations

- Pre-lithium case shows typical barrier region inside separatrix
- Change in n_e profile with lithium from 0.95<ψ_N<1 consistent with drop in fueling at ~ constant transport

(red shaded region)

Recycling and edge transport changes interpreted with SOLPS simulations

- Pre-lithium case shows typical barrier region inside separatrix
- Change in n_e profile with lithium from 0.95<ψ_N<1 consistent with drop in fueling at ~ constant transport
- Spatial region of low transport expanded with lithium
 - Low D_⊥, χ_e persist to inner boundary of simulation (ψ_N ~0.8)

Spatial extent of low D, χ_e region expanded continuously with increasing pre-discharge lithium

R. Maingi: low-Z impurity effects on the pedestal – ITER school USTC, Hefei, China

Change in edge density gradient with lithium coatings alters the edge micro-stability properties

- From ψ_N = 0.95-1, n_e gradient reduced with lithium
 - ETG more unstable, correlates with higher χ_e
- From ψ_N = 0.8-0.95, n_e gradient increased with lithium
 - μT more stable over outer part of range, correlates with lower χ_e
- Both μT and ETG are plausible candidates – drive transport in electron channel
- Linear GS2 calcs only: (need non-linear calcs for actual heat flux)
- E x B shear rate higher w/Li

What is the role of lithium? To reduce recycling and associated fueling

 ψ_{N} from 0.95-1 (recycling region)

Li coatings reduce recycling and core fueling (SOLPS)

 ψ_{N} from 0.8-0.94

 ψ_{N} from 0.95-1 (recycling region)

ψ_{N} from 0.8-0.94

16Dec2015 66

ψ_{N} from 0.95-1 (recycling region)

ψ_{N} from 0.8-0.94

 ψ_{N} from 0.95-1 (recycling region)

 ψ_{N} from 0.8-0.94

ψ_{N} from 0.95-1 (recycling region)

ψ_{N} from 0.8-0.94

 ψ_{N} from 0.95-1 (recycling region)

ψ_N from 0.8-0.94

 ψ_{N} from 0.95-1 (recycling region)

 ψ_{N} from 0.8-0.94

 ψ_{N} from 0.95-1 (recycling region)

 ψ_N from 0.8-0.94

Profile changes in DIII-D in ELM-free H-mode qualitatively similar to NSTX ELM-free H-mode with inter-shot Li

• Gradients shifted inward more in NSTX than in DIII-D

Summary and Open Questions: Effect of Lithium predischarge coatings in NSTX

- Pre-discharge Li coatings result in improved pressure and confinement, increasing with Li dose
 - n_e profile shifts inward, T_e profile stays constant, pressure shifts away from separatrix
 - n_e shift consistent with reduced recycling and constant transport in last 3% of ψ_N (source region)
 - T_e invariance consistent with ETG destabilization
 - Confinement improvement consistent with μT stabilization
- Why does particle transport go down inside of pedestal?
- Why is there no evidence of a fluctuation increase in the far edge, near the SOL?

Outline

- Pedestals with carbon walls and high-Z walls
 - Brief history of PFC materials in fusion devices
- Purposeful introduction of low-Z
 - Real time injection with gas/aerosol [JET, AUG, DIII-D, EAST]
 - Inter-discharge Coatings (lithium, (boron)) [NSTX, (LTX, C-Mod, EAST)]
 - Real-time injection with pellets [DIII-D, EAST]
 - Low-Z liquid metal PFCs: static, flowing [(LTX, FTU), EAST]
- Prospects and open questions

Required ELM frequency for acceptable ELM size in ITER increases with I_p

- $\Delta W_{ELM} < 0.7 \text{ MJ} (0.2\% \text{ W}_{p})$
 - 50% of damage limit, not including fatigue
- Inter-ELM heat flux width $\lambda_q \sim 1/I_p$
 - ELM wetted area critical
- $\Delta W_{ELM} f_{ELM} = (0.2-0.4) P_{SOL}$
- Minimum required f_{ELM} for acceptable heat flux increases with I_P
 - (Including Be/W PFCs)

Peak heat flux decreased in DIII-D with D₂ pellet pacing, but not in JET with the ILW

Multiplication of natural ELM frequency and heat flux reduction obtained with lithium granule injection in DIII-D

A. Bortolon, Nucl. Fusion (2015) to be submitted

Substantial Li concentration in core with LGI, but carbon density reduced so Z_{eff} changes modestly

- Rapid ELMs with LGI reduced edge n_e
- T_e increased at constant pressure
- T_i increased

Output: Carbon was reduced
Output: No intrinsic effect of high edge Li on edge stability!

A. Bortolon, Nucl. Fusion (2015) to be submitted

Two classes of ELMs observed In low torque DIII-D discharges

- ELM pacing by LGI shown in ITER-like, low-torque (T~0.6 N m)
 - 0.7 mm granules, 110m/s
 - Pacing efficiency ~100%
- LGI injection frequency reduced dynamically during the shot
 - From 240 Hz to 60 Hz (4X)
- Frequency of ELMs follows the evolution of frequency of Li ablations
- Two classes of paced ELMs
 - Small and frequent
 - Large and rare
- Frequency of large ELMs does not change substantially from reference
 - Amplitude is larger!

A. Bortolon, H-mode workshop 2015

Outline

- Pedestals with carbon walls and high-Z walls
 - Brief history of PFC materials in fusion devices
- Purposeful introduction of low-Z
 - Real time injection with gas/aerosol [JET, AUG, DIII-D, EAST]
 - Inter-discharge Coatings (lithium, (boron)) [NSTX, (LTX, C-Mod, EAST)]
 - Real-time injection with pellets [DIII-D, EAST]
 - Low-Z liquid metal PFCs: static, flowing [(LTX, FTU), EAST]
- Prospects and open questions

Liquid lithium limiter delivered to EAST was evaluated as a primary outer midplane PFC in Oct. 2014

- Liquid Li thin film viscous flow system tested on HT-7 and EAST
 - To confirm that liquid Li flow can be maintained for long periods
- H-mode discharges maintained with liquid Li PFC!!
 - Wetting suboptimal
 - Next test with new plate in FY16

Copper coupon and collector

Schematic of heated copper plate and small liquid lithium reservoir, to be mounted on an insertable probe for testing in EAST during the 2014 campaign

J.S. Hu, Nucl. Fusion (2015) submitted

EAST: Liquid lithium limiter concept developed and fabricated at PPPL, and inserted via midplane port

R. Maingi: low-Z impurity effects on the pedestal – ITER school USTC, Hefei, China

EAST: Liquid lithium limiter compatible with EAST scenarios, including H-mode

- Lithium light increased when current driven in limiter system
- Performance 1 improved in ohmic 0.75 discharges
- D_α and impurities decreased in both divertors
- Damage to limiter observed; design upgrade started

J.S. Hu et al., Nucl. Fusion (2015) submitted

Summary and Open Questions

- Low-Z impurities can improve pedestal performance
 - Combination of profile shift, higher Z_{eff}, and maybe main ion dilution all contribute
 - Is it simply necessary to have lower-Z than the wall material, or Z<10 (Neon) required?</p>
 - Why don't noble gases enhance performance like N_2 or Li?
 - Does the magnitude of the improvement increase with the density profile shift, independent of species?
 - Is there evidence for what clamps the T_e profile?
 - What kind of mode is the BCM? Can we excite modes, e.g. the BCM or ECM, for a controllable profile shift?
 - Will the low-Z injections generate hydrogen-rich dust?
- Li seems to give the highest performance boost
 - Is there an upper P_{SOL} limit on use of lithium?
 - Can a flowing liquid lithium system be designed to capitalize on this increase, while also removing tritium?

A model for pedestal height has been developed and tested

- EPED model combines peelingballooning (PB) stability and a model for limit on pressure gradient
- Limit on Grad P from model of kinetic ballooning modes (KBM)
 - Proposed to provide hard limit to pressure gradient
- Combined models for PB and KBM predict a unique operating point

Edge density, temperature, and pressure profiles fitted to "standard" modified hyperbolic functional form

R. Maingi: low-Z impurity effects on the pedestal – ITER school USTC, Hefei, China

ROSATOM

> Federal State Unitary Enterprise "Red Star"

Lithium loaded targets withstood high steady and transient heat loads in plasma gun experiments

Lithium Capillary Porous System (CPS) targets

- Steady operation with heat loads from 1-11 MW/m² withstood for 3 hours
- Heat loads < 25 MW/m² withstood with Li targets (5-10 minutes, limited by Li inventory)
- Transient loads < 50 MW/m² withstood with Li targets without cooling (up to 15 sec)

IAEA Technical Meeting on Assessment of Atomic and Molecular Data Priorities Vienna, Austria, 04 - 05 December 2006

Liquid metal PFCs are an option to solid PFCs, but have substantial R&D needs to assess viability

- Advantages
 - Erosion tolerable from PFC view: self-healing surface
 - No dust; main chamber material and tritium transported to divertor could be removed via flow outside of tokamak
 - Liquid metal is neutron tolerant; protects substrate from PMI
 - Liquid (and solid) lithium offer access to low recycling, high confinement regimes under proper conditions
 - Very high steady, and transient heat exhaust, in principle (50 MW/m² from electron beam exhausted; also 60 MJ/m² in 1 μ sec)
- Disadvantages and R&D needs
 - Liquid metal surfaces and flows need to be stable
 - Liquid metal chemistry needs to be controlled
 - Temperature windows need optimization

* Most of experience in fusion is with Li, but Sn and eutectics (e.g. Sn-Li) offer some promise in terms of broader temperature windows

NSTX-U will commence research operations in Dec. 2015

NSTX-U Facility Parameters Major Radius 0.90 m Minor Radius ≤ 0.55 m Plasma Current ≤ 2.0 MA Toroidal Field ≤ 1.0 T Neutral Beam Power ≤ 12 MW RF Heating ≤ 6 MW Pulse Length $\leq 10 \text{ sec}$

LTX remains the only tokamak with a hot, high Z, lithium compatible wall

